Project Profile 1. Project Title & : Evaluating AtF5H expression in Eucalyptus camaldulensis for Code lignin modification and improved pulp yields NFRP-194 **2. Name of the** : Dr. A. Balasubramanian, Scientist B **Principal Investigator** 3. Date of start & : 1st April, 2024, Four years duration 4. Total Budget : Rs.12.40 in lakhs ## 5. Main Objectives • To assess the variations in S/G ratio, pulping efficiency and F5H gene sequence in *Eucalyptus camaldulensis*. • To identify gene editing targets for enhancing lignin S/G ratio in Eucalyptus camaldulensis. - To generate gene-edited *Eucalyptus camaldulensis* and evaluate the effect of gene edits on *EcF5H* expression. - To engineer enhanced lignin S/G ratios in *Eucalyptus camaldulensis* through heterologous expression of *AtF5H* gene. ## **6. Outline of Research Programme** (yearly plan of action): | Year | Activity | |--------|---| | First | Estimate the S/G ratio of lignin in selected clones of <i>E. camaldulensis</i>. Assess pulping efficiency of clones with significantly contrasting S/G ratio. Study the F5H gene sequence variation in selected clones of <i>E. camaldulensis</i> with contrasting S/G ratio. Isolation of RNA from cambium tissues of <i>E. camaldulensis</i> and sequencing of small RNAs. Clone <i>AtF5H</i> gene from <i>Arabidopsis thaliana</i> and develop transformation construct for expression in <i>E. camaldulensis</i>. | | Second | Identify potential miRNAs with homology to the EcF5H gene. Quantify the expression of small RNAs and EcF5H gene using qRT-PCR. Design guide RNA and develop gene-editing constructs for increasing S/G ratio. Generate AtF5H expressing Eucalyptus plantlets by A. tumefaciens mediated transformation and hardening of transgenic events at the transgenic greenhouse. | | Third | Clone EcF5H gene and identify gene editing targets in EcF5H. Generate E. camaldulensis plants using the developed gene editing construct. Generate AtF5H expressing Eucalyptus plantlets by A. tumefaciens mediated transformation and hardening of transgenic events at the transgenic greenhouse. | | Fourth | Generate <i>E. camaldulensis</i> plants using the developed gene editing construct. | - Generate AtF5H expressing Eucalyptus plantlets by A. tumefaciens mediated transformation and hardening of transgenic events at the transgenic greenhouse. - Evaluate the effects of gene edits on the expression of *EcF5H* gene by qRT-PCR/stem loop RT-PCR. - Quantify *AtF5H* expression and determine transgene copy number in transgenic events by qRT-PCR. - Estimate S/G ratio of wood using Py-GC-MS / NMR, pulping analysis of the transgenic events. ## 7. Progress of the project in brief: - To estimate the S/G ratio of lignin, wood samples of ICFRE-IFGTB-released *E. camaldulensis* clones (11 Nos.) were collected from the Field Research Station, Kurumbampatti, Salem. - The total RNA and genomic DNA were isolated from *Arabidopsis thaliana* leaves. The F5H gene and C4H promoter were PCR amplified for cloning into the pCAMBIA1305.2 plant expression vector. - Obtained permission from ICFRE to procure plasmids from Addgene, USA